EE 435

Lecture 41

References and Bias Generators

Bias Voltages/Currents and References

How do we get quantities such as voltage, current, resistance, temperature, ?.... in an electronic circuit

Bias Voltages/Currents and References

How are these voltages and currents generated?

Bias Voltages/Currents and References

How are these voltages and currents generated?

All will work !
Termed Supply-Referenced Sources
But supply sensitivity (supplies usually poorly controlled and noisy), process dependence, and temperature dependence unacceptable in many applications

Bias Voltages/Currents and References

How are these voltages and currents generated?

For voltage references, must find circuit that generates output that has units Volts ! For current references, must find circuit that generates output that has units Amps !

Bias Voltages/Currents Generators

How are these voltages and currents generated?

Inverse-Widlar

$$
\begin{aligned}
& \mathrm{V}_{01}=\mathrm{V}_{\mathrm{Tn}}\left(\frac{1-\sqrt{\frac{\mathrm{M}_{54} \mathrm{~W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}}{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{3}}{\mathrm{~W}_{3} \mathrm{~L}_{2}}}-\sqrt{\frac{\mathrm{M}_{54} \mathrm{~W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}}\right) \\
& \mathrm{V}_{02}=\mathrm{V}_{\mathrm{Tn}}\left(\frac{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{3}}{\mathrm{~W}_{3} \mathrm{~L}_{2}}}-2 \sqrt{\frac{\mathrm{M}_{54} \mathrm{~W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}}{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{3}}{\mathrm{~W}_{3} \mathrm{~L}_{2}}}-\sqrt{\frac{\mathrm{M}_{54} \mathrm{~W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}}\right)
\end{aligned}
$$

M_{54} is the $M_{5}: M_{4}$ Current Mirror Gain

Supply-independent Bias Generator!
Start-up circuit needed (notice positive feedback loop)
Supply-independent Bias Generators Widely Used

Bias Voltages/Currents Generators

Widlar Generator !

$$
\begin{aligned}
& \mathrm{V}_{01}=\left(\frac{\theta_{1}}{2} \pm \sqrt{\frac{\theta_{1} \mathrm{~V}_{\mathrm{Tn}}}{2}+\left(\frac{\theta_{1}}{2}\right)^{2}}\right)\left(1-\sqrt{\frac{\mathrm{W}_{1} \mathrm{~L}_{2}}{\mathrm{M}_{45} \mathrm{~W}_{2} \mathrm{~L}_{1}}}\right) \\
& \mathrm{V}_{02}=\mathrm{V}_{\mathrm{Tn}}+\frac{\theta_{1}}{2} \pm \sqrt{\frac{\theta_{1} \mathrm{~V}_{\mathrm{Tn}}}{2}+\left(\frac{\theta_{1}}{2}\right)^{2}} \\
& \text { where } \\
& \qquad \theta_{1}=\frac{\mathrm{M}_{45} 2 \mathrm{~L}_{1}}{\mathrm{R} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{1}}
\end{aligned}
$$

M_{45} is the $M_{4}: M_{5}$ Current Mirror Gain

Supply-independent Bias Generator!
Start-up circuit needed (notice positive feedback loop)
Supply-independent Bias Generators Widely Used

Bias Voltages/Currents Generators

Martin Johns Page 307

$$
\begin{aligned}
& \mathrm{V}_{01}=\left(\frac{\theta_{1}}{2} \pm \sqrt{\frac{\theta_{1} \mathrm{~V}_{\mathrm{Tn}}}{2}+\left(\frac{\theta_{1}}{2}\right)^{2}}\right)\left(1-\sqrt{\frac{\mathrm{W}_{1} \mathrm{~L}_{2}}{\mathrm{M}_{65} \mathrm{~W}_{2} \mathrm{~L}_{1}}}\right) \\
& \mathrm{V}_{02}=\mathrm{V}_{\mathrm{Tn}}+\frac{\theta_{1}}{2} \pm \sqrt{\frac{\theta_{1} \mathrm{~V}_{\mathrm{Tn}}}{2}+\left(\frac{\theta_{1}}{2}\right)^{2}}
\end{aligned}
$$

where

$$
\theta_{1}=\frac{\mathrm{M}_{65} 2 \mathrm{~L}_{1}}{\mathrm{R} \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{1}}
$$

M_{65} is the $\mathrm{M}_{6}: \mathrm{M}_{5}$ Current Mirror Gain

Widlar Generator !

Supply-independent Bias Generator!
Start-up circuit needed (notice positive feedback loop)
Supply-independent Bias Generators Widely Used

Bias Voltages/Currents Generators

Need for Start-up Circuit

$\mathrm{V}_{\text {OUT }}=\mathrm{f}\left(\mathrm{V}_{\text {IN }}\right)$ termed the return map
Termed Homotopy Analysis
Must not perturb operating point when breaking loop !

Bias Voltages/Currents Generators

Need for Start-up Circuit

Bias Voltages/Currents Generators

Need for Start-up Circuit

Without start-up circuit

With start-up circuit

Bias Voltages/Currents Generators

Several different start-up circuits have been used
This start-up circuit shuts off during normal operation !

Types of References

- Voltage References
- Current References
- Time References

Sensors Closely Related

- Temperature
- Period
- Resistance
- Capacitance

Voltage Reference

Current Reference

Desired Properties of References

- Accurate
- Temperature Stable
- Time Stable
- Insensitive to $\mathrm{V}_{\text {BIAS }}$
- Low Output Impedance (voltage reference)
- Floating
- Small Area
- Low Power Dissipation
- Process Tolerant
- Process Transportable

Desired Properties of References

- Accurate $\sqrt{ }$
- Temperature Stable
- Time Stable
- Insensitive to $V_{\text {BIAS }}$

- Low Output Impedance (voltage reference)
- Floating
- Small Area
- Low Power Dissipation
- Process Tolerant
- Process Transportable

Similar properties desired in other references

Consider Voltage References

If matching assumed and Y effects neglected
Popular Voltage "Reference"

$$
\mathrm{V}_{\text {REF }}=\frac{\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{TH}}\left(1-\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}\right)}{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}}
$$

Consider Voltage References

Popular Voltage "Reference"
Uses as a reference limited to biasing and even for this may not be good enough !

If matching assumed and γ effects neglected

$$
\mathrm{V}_{\text {REF }}=\frac{\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {THO }}\left(1-\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}\right)}{1+\sqrt{\frac{\mathrm{W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1} \mathrm{~L}_{2}}}}
$$

Dependent upon $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{TH}}$, matching, process variations, Y
Termed a $V_{D D}, V_{T H}$ reference
Does not satisfy key properties of voltage references

Consider Voltage References

Observation - Variables with units Volts needed to build any voltage reference

Voltage References

Observation - Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?
What variables which have units volts satisfy the desired properties of a voltage reference?

How can a circuit be designed that "expresses" the desired variables?

Voltage References

Observation - Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{D}}$ (diode) $, \mathrm{V}_{\mathrm{Z}}, \mathrm{V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\mathrm{TH}}$???
What variables which have units volts satisfy the desired properties of a voltage reference?

How can a circuit be designed that "expresses" the desired variables?

Voltage References

Consider the Diode

$$
\begin{array}{ll}
I_{D}=J_{S} A e^{\frac{V_{D}}{V_{t}}} & \begin{array}{l}
V_{t}=\frac{k T}{q} \\
\frac{k}{\mathrm{q}}=\frac{1.38 \times 10^{-23}}{1.602 \times 10^{-19}} \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{K}}=8.614 \times 10^{-5} \frac{\mathrm{~V}}{{ }^{\circ} \mathrm{K}}
\end{array} \\
J_{S}=\tilde{J}_{S X}\left[\mathrm{~T}^{\mathrm{m}} e^{\frac{-V_{G 0}}{\mathrm{~V}_{t}}}\right] & \begin{array}{l}
\mathrm{V}_{G 0}=1.206 \mathrm{~V} \\
\text { termed the bandgap voltage }
\end{array}
\end{array}
$$

pn junction characteristics highly temperature dependent through both the exponent and J_{s}
$\mathrm{V}_{\mathrm{G} 0}$ is nearly independent of process and temperature

Voltage References

Observation - Variables with units Volts needed to build any voltage reference

What variables available in a process have units volts?
$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{D}}$ (diode) $, \mathrm{V}_{\mathrm{Z}}, \mathrm{V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\mathrm{G} 0}$???
What variables which have units volts satisfy the desired properties of a voltage reference? $\mathrm{V}_{\mathrm{G} 0}$ and ??

How can a circuit be designed that "expresses" the desired variables?

Voltage References

$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{T}}, \mathrm{V}_{\mathrm{D}}$ (diode) $, \mathrm{V}_{\mathrm{Z}}, \mathrm{V}_{\mathrm{BE}}, \mathrm{V}_{\mathrm{t}}, \mathrm{V}_{\mathrm{G} 0}$???
How can a circuit be designed that "expresses" the desired variables?

- $\mathrm{V}_{\mathrm{G} 0}$ is deeply embedded in a device model with horrible temperature effects !
- Good diodes are not widely available in most MOS processes !

$$
I_{C}=\tilde{J}_{S X} A T^{m} e^{\frac{-V_{G O}}{V_{t}}} e^{\frac{V_{B E}}{V_{t}}}
$$

Voltage References

Good diodes are not widely available in most MOS processes !

Voltage References

Good diodes are not widely available in most MOS processes !

These diodes interact and
Not practical to forward bias junction actually form substrate pnp transistor

Voltage References

Good diodes are not widely available in most MOS processes !

Voltage References

Voltage References

Voltage references that "express" the bandgap voltage are termed "Bandgap References"

- $\mathrm{V}_{\mathrm{G} 0}$ is deeply embedded in a device model with horrible temperature effects !
- Good BJTs are not widely available in most MOS processes but the substrate pnp is available!

Standard Approach to Building Voltage References

Pick K so that at some temperature $\mathrm{T}_{0},\left.\quad \frac{\partial\left(\mathbf{X}_{\mathbf{N}}+\mathbf{K} \mathbf{X}_{\mathbf{P}}\right)}{\partial \mathbf{T}}\right|_{\mathbf{T}=\mathrm{T}_{0}}=\mathbf{0}$

Standard Approach to Building Voltage References

Standard Approach to Building Voltage References

Bandgap Voltage References

Consider two BJTs (or diodes)

$$
\begin{aligned}
V_{B E} & =V_{G 0}+V_{t} \ln \left(\frac{I_{C}}{\tilde{J}_{S X} A_{E}}\right)-m V_{t} \ln T \\
& V_{B E 2}-V_{B E 1}=\Delta V_{B E}=\left[\frac{k}{q} \ln \left(\frac{I_{C 2}}{I_{C 1}} \frac{A_{E 1}}{A_{E 2}}\right)\right] T
\end{aligned}
$$

If the $\frac{\mathrm{I}_{\mathrm{C} 2} A_{E 1}}{\mathrm{I}_{\mathrm{C} 1} A_{\mathrm{E} 2}}$ ratio is constant and >1, the $T C$ of $\Delta \mathrm{V}_{\mathrm{BE}}$ is positive
$\Delta \mathrm{V}_{\mathrm{BE}}$ is termed a PTAT voltage (Proportional to Absolute Temperature)
This relationship applies irrespective of how temperature dependent $\mathrm{I}_{\mathrm{C} 1}$ and $\mathrm{I}_{\mathrm{C} 2}$ may be provided the ratio is constant !!

Bandgap Voltage References

Consider two BJTs (or diodes)

$V_{B E 2}-V_{B E 1}=\Delta V_{B E}=\left[\frac{k}{q} \ln \left(\frac{I_{C 2} A_{E 1}}{\mathrm{I}_{1} \mathrm{~A}_{E 2}}\right)\right] \mathrm{T}$

$$
\frac{\partial\left(\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}\right)}{\partial \mathrm{T}}=\frac{\mathrm{k}}{\mathrm{q}} \ln \left(\frac{\mathrm{I}_{\mathrm{C} 2} \mathrm{~A}_{\mathrm{E} 1}}{\mathrm{I}_{\mathrm{C} 1} \mathrm{~A}_{\mathrm{E} 2}}\right)
$$

At room temperature if $\ln \left(\frac{I_{C 2} A_{E 1}}{I_{C 1} A_{E 2}}\right)=1$

$$
V_{B E 2}-V_{B E 1}=\left[8.6 \times 10^{-5} \times 300\right]=25.8 \mathrm{mV}
$$

and

$$
\left.\frac{\partial\left(V_{\text {BE } 2}-V_{B E 1}\right)}{\partial T}\right|_{T=T_{0}=3000^{\circ} \mathrm{K}}=8.6 \times 10^{-5}=86 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
$$

The temperature coefficient of the PTAT voltage is rather small

Bandgap Voltage References

Consider two BJTs (or diodes)

$$
\frac{\partial\left(\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}\right)}{\partial \mathrm{T}}=\frac{\mathrm{k}}{\mathrm{q}} \ln \left(\frac{\mathrm{I}_{\mathrm{C} 2}}{\mathrm{I}_{\mathrm{C} 1}}\right)
$$

At room temperature if $A_{E 1}=A_{E 2}$

The temperature coefficient of the PTAT voltage is rather small even if large collector current ratios are used

Bandgap Voltage References

Consider two BJTs (or diodes) Typically, $m=2.3, \mathrm{~V}_{\mathrm{G} 0}=1.2 \mathrm{~V} \quad$ Assume $\mathrm{V}_{\mathrm{BE}} \approx 0.65 \mathrm{~V}$

If I_{C} is independent of temperature, it follows that

$$
\begin{aligned}
\frac{\partial V_{B E}}{\partial T} & =\frac{k}{q}\left[-m+\left(\frac{V_{B E}-V_{G 0}}{V_{t}}\right)\right] \\
\left.\frac{\partial V_{B E}}{\partial T}\right|_{T=T_{0}=300^{\circ} \mathrm{K}} & \cong 8.6 \times 10^{-5}\left[-2.3+\left(\frac{0.65-1.2}{25 \mathrm{mV}}\right)\right] \cong-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Bandgap Voltage References

Consider two BJTs (or diodes)
Typically, $\mathrm{m}=2.3, \mathrm{~V}_{\mathrm{G} 0}=1.2 \mathrm{~V}$
Assume $\mathrm{V}_{\mathrm{BE}} \approx 0.65 \mathrm{~V}$

Thus if I_{C} independent of temperature and if $\ln \left(\frac{I_{C 2} A_{E 1}}{I_{C 1} A_{E 2}}\right)=1$

$$
\begin{gathered}
\left.\frac{\partial \mathrm{V}_{\mathrm{BE}}}{\partial \mathrm{~T}}\right|_{\mathrm{T}=\mathrm{T}_{0}=300{ }^{\circ} \mathrm{K}} \cong-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C} \\
\left.\frac{\partial\left(\mathrm{~V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}\right)}{\partial \mathrm{T}}\right|_{\mathrm{T}=\mathrm{T}_{0}=300^{\circ} \mathrm{K}}=86 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}
\end{gathered}
$$

Magnitude of TC of PTAT source is much smaller than that of V_{BE} source

Define:

$$
\mathrm{X}_{\mathrm{N}}=\mathrm{V}_{\mathrm{BE}} \quad \mathrm{X}_{\mathrm{P}}=\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}
$$

Create circuit with:

$$
X_{\text {OUT }}=X_{N}+K X_{P}
$$

If we want $\left.\frac{\partial\left(\mathbf{X}_{\mathbf{N}}+\mathbf{K} \mathbf{X}_{\mathbf{P}}\right)}{\partial \mathbf{T}}\right|_{\mathbf{T}=\mathrm{T}_{0}}=\mathbf{0} \quad \mathrm{K}$ will need to be large

Bandgap Voltage References

Consider two BJTs (or diodes)

$$
V_{B E}=V_{G 0}+V_{\mathrm{t}} \ln \left(\frac{I_{C}}{\tilde{J}_{S x} A_{E}}\right)-m V_{\mathrm{I}} \operatorname{lnT}
$$

It was just shown that if I_{C} is independent of temperature

$$
\left.\frac{\partial V_{B E}}{\partial \mathrm{~T}}\right|_{T=T_{0}=300^{\circ} \mathrm{K}} \cong 8.6 \times 10^{-5}\left[-2.3+\left(\frac{0.65-1.2}{25 \mathrm{mV}}\right)\right] \cong-2.1 \mathrm{mV} /{ }^{\circ} \mathrm{C}
$$

If I_{C} is reasonably independent of temperature, V_{BE} will still provide a negative TC
Even if I_{C} is highly dependent on temperature, V_{BE} will still provide a negative $T C$ Observe $\mathrm{V}_{\mathrm{G} 0}$ appears prominently in V_{BE}

Bandgap Voltage References

Consider two BJTs (or diodes)

Key observation about diodes and diode-connected BJTs

1. If ratio of currents in two devices is constant, $\Delta \mathrm{V}_{\mathrm{BE}}$ can be PTAT independent of the temperature dependence of the currents and sensitivity of $\Delta \mathrm{V}_{\mathrm{BE}}$ to T is small
2. VBE has a negative temperature coefficient for a wide range of temperature dependent or temperature independent currents and sensitivity is much larger than that of $\Delta V_{B E}$

Bandgap Reference Circuits

- Circuits that implement $\Delta \mathrm{V}_{\mathrm{BE}}$ and V_{BE} or $\Delta \mathrm{V}_{\mathrm{D}}$ and V_{D} widely used to build bandgap references

V_{BE} and $\Delta \mathrm{V}_{\mathrm{BE}}$ with constant I_{C}

$$
V_{B E}=V_{G 0}+V_{t} \ln \left(\frac{I_{C}}{\tilde{J}_{S X} A_{E}}\right)-m V_{t} \ln T
$$

$V_{B E}$ plot for constant I_{C}

Combined effects of the T and TnT terms in $V_{B E}$ is nearly linear dependent on T

Comparison of V_{BE} with constant current and PTAT current

Even if I_{C} is highly-dependent on current, temperature dependence of V_{BE} is still nearly linearly dependent upon T

Early Bandgap Reference (and still widely used!)

P.Brokaw, "A Simple Three-Terminal IC Bandgap Reference", IEEE Journal of Solid State Circuits, Vol. 9, pp. 388-393, Dec. 1974.

- Brokaw coined term "bandgap reference" when referring to this circuit
- Properties very similar circuits introduced by Widlar and Kujik a small while earlier
- Paper submitted May 1974, Widlar paper submitted March 1970

New Developments in IC Voltage Regulators

```
ROBERT J. WIDLAR
```


Widlar retired in Dec. 1970 at the age of 33
Widlar observed $\Delta \mathrm{V}_{\mathrm{BE}}$ is PTAT in 1965
] R. J. Widlar, "Some circuit design techniques for linear integrated circuits," IEEE Trans. Circuit Theory, vol. CT-12, pp. 586-590, December 1965.

Most Published Analysis of Bandgap Circuits

$V_{\text {REF }}$ often expressed as:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{REF}}=\mathrm{V}_{\mathrm{G} 0}+\frac{\mathrm{T}}{\mathrm{~T}_{0}}\left(\mathrm{~V}_{\mathrm{BE} 0}-\mathrm{V}_{\mathrm{G} 0}\right)+\mathrm{K} \frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{~J}_{2}}{\mathrm{~J}_{1}}\right)+(\mathrm{m}-1) \frac{\mathrm{kT}}{\mathrm{q}} \ln \left(\frac{\mathrm{~T}_{0}}{\mathrm{~T}}\right) \\
& \text { where } \mathrm{K} \text { is the gain of the PTAT signal }
\end{aligned}
$$

(Not a solution and dependent upon both T_{0} and $\mathrm{V}_{\mathrm{BEO}}$)

First Bandgap Reference (and still widely used!)

$$
\begin{aligned}
& I_{E 1} R_{2}+V_{B E 1}=V_{B E 2} \\
& V_{R E F}=V_{B E 2}+\left(I_{E 1}+I_{E 2}\right) R_{1} \\
& I_{C 1}=\frac{V_{D D}-V_{C 2}}{R_{3}} \\
& I_{C 2}=\frac{V_{D D}-V_{C 2}}{R_{4}} \\
& I_{C 1}=\alpha_{1} I_{E 1} \\
& I_{C 2}=\alpha_{2} I_{E 2} \\
& I_{E 1}=I_{E 2}\left[\frac{\alpha_{2}}{\alpha_{1}} \frac{R_{4}}{R_{3}}\right]
\end{aligned} \quad \begin{aligned}
& \alpha=\frac{\beta}{1+\beta} \\
&
\end{aligned} \quad I_{C 1}=I_{C 2}\left[\frac{R_{4}}{R_{3}}\right]
$$

From these equations can show

$$
V_{\text {REF }}=V_{B E 2}+\left(V_{B E 2}-V_{B E 1}\right)\left[\frac{R_{1}}{R_{2}}\left(1+\frac{a_{1}}{\alpha_{2}} \frac{R_{3}}{R_{4}}\right)\right]
$$

Not a solution but can provide zero temp slope by adjusting R_{1}

First Bandgap Reference (and still widely used!)

Will now obtain solution for $\mathrm{V}_{\text {REF }}$ (in terms of component values and model parameters)

$$
V_{R E F}=V_{B E 2}+\left(V_{B E 2}-V_{B E 1}\right)\left[\frac{R_{1}}{R_{2}}\left(1+\frac{\alpha_{1}}{\alpha_{2}} \frac{R_{3}}{R_{4}}\right)\right]
$$

$$
\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}=\Delta \mathrm{V}_{\mathrm{BE}}=\left[\frac{\mathrm{k}}{\mathrm{q}} \ln \left(\frac{\mathrm{~A}_{\mathrm{E} 1}}{\mathrm{~A}_{\mathrm{E} 2}}\left[\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}}\right]\right)\right] \mathrm{T}
$$

First Bandgap Reference (and still widely used!)

Will now obtain solution for $\mathrm{V}_{\text {REF }}$ (in terms of component values and model parameters)

$$
\begin{gathered}
V_{R E F}=V_{B E 2}+\left(V_{B E 2}-V_{B E 1}\right)\left[\frac{R_{1}}{R_{2}}\left(1+\frac{\alpha_{1}}{\alpha_{2}} \frac{R_{3}}{R_{4}}\right)\right] \\
V_{B E 1}=V_{G 0}+V_{t} \ln \left(\frac{I_{C 1}}{\tilde{J}_{S X} A_{E 1}}\right)-m V_{t} \ln T \\
V_{B E 2}=V_{G 0}+V_{t} \ln \left(\frac{I_{C 2}}{\tilde{J}_{S X} A_{E 2}}\right)-m V_{t} \ln T \\
I_{C 1}=I_{C 2}\left[\frac{R_{4}}{R_{3}}\right] \\
\frac{I_{C 1}}{\alpha_{1}} R_{2}+V_{B E 1}=V_{B E 2}
\end{gathered}
$$

From the expression for $\bigvee_{\mathrm{BE} 2}$ and some routine but tedious manipulations it follows that

$$
V_{\mathrm{BE} 2}=\mathrm{V}_{\mathrm{G} 0}+(1-\mathrm{m}) \mathrm{V}_{\mathrm{t}} \ln T+\mathrm{V}_{\mathrm{t}} \ln \left(\frac{\mathrm{k}}{\mathrm{q}} \frac{\alpha_{1}}{\mathrm{R}_{2} \mathrm{~A}_{\mathrm{E} 2} \tilde{J}_{\mathrm{SX}}} \frac{\mathrm{R}_{3}}{\mathrm{R}_{4}} \ln \left(\frac{\mathrm{~A}_{\mathrm{E} 1}}{\mathrm{~A}_{\mathrm{E} 2}} \frac{\mathrm{R}_{3}}{\mathrm{R}_{4}}\right)\right)
$$

First Bandgap Reference (and still widely used!)

$$
V_{R E F}=V_{B E 2}+\left(V_{B E 2}-V_{B E 1}\right)\left[\frac{R_{1}}{R_{2}}\left(1+\frac{\alpha_{1}}{\alpha_{2}} \frac{R_{3}}{R_{4}}\right)\right]
$$

$$
\mathrm{V}_{\mathrm{BE} 2}-\mathrm{V}_{\mathrm{BE} 1}=\left[\frac{\mathrm{k}}{\mathrm{q}} \ln \left(\frac{\mathrm{~A}_{\mathrm{E} 1}}{\mathrm{~A}_{\mathrm{E} 2}}\left[\frac{\mathrm{R}_{3}}{\mathrm{R}_{4}}\right]\right)\right] \mathrm{T}
$$

$$
V_{B E 2}=V_{G 0}+(1-m) V_{t} \ln T+V_{t} \ln \left(\frac{k}{q} \frac{\alpha_{1}}{R_{2} A_{E 2} J_{S X}} \frac{R_{3}}{R_{4}} \ln \left(\frac{A_{E 1}}{A_{E 2}} \frac{R_{3}}{R_{4}}\right)\right)
$$

It thus follows that:

$$
V_{\text {REF }}=V_{G 0}+V_{t} \ln \left\{\frac{\alpha_{1}}{R_{2}} \frac{R_{3}}{R_{4}} T \frac{k}{q} \ln \left(\frac{A_{E 1}}{A_{E 2}} \frac{R_{3}}{R_{4}}\right)\right\}-V_{t}\left(\ln \left(\tilde{L}_{\mathrm{S} 2}\right)+m \ln T\right)+\left[\frac{k}{q} \ln \left(\frac{A_{E 1}}{A_{E 2}}\left(\frac{R_{3}}{R_{4}}\right)\right)\right]\left[\frac{R_{1}}{R_{2}}\left(1+\frac{\alpha_{1}}{\alpha_{2}} \frac{R_{3}}{R_{4}}\right)\right] T
$$

First Bandgap Reference (and still widely used!)

$$
V_{R E F}=V_{B E 2}+\left(V_{B E 2}-V_{B E 1}\right)\left[\frac{R_{1}}{R_{2}}\left(1+\frac{\alpha_{1}}{\alpha_{2}} \frac{R_{3}}{R_{4}}\right)\right]
$$

$$
V_{R E F}=V_{G 0}+V_{t} \ln \left\{\frac{\alpha_{1}}{R_{2}} \frac{R_{3}}{R_{4}} T \frac{k}{q} \ln \left(\frac{A_{E 1}}{A_{E 2}} \frac{R_{3}}{R_{4}}\right)\right\}-V_{t}\left(\ln \left(\tilde{l}_{\mathrm{s} 2}\right)+\operatorname{mln} T\right)+\left[\frac{k}{q} \ln \left(\frac{A_{E 1}}{A_{E 2}}\left(\frac{R_{3}}{R_{4}}\right)\right)\right]\left[\frac{R_{1}}{R_{2}}\left(1+\frac{\alpha_{1}}{\alpha_{2}} \frac{R_{3}}{R_{4}}\right)\right] T
$$

This can be expressed after some tedious algebraic manipulations as

$$
V_{\text {REF }}=a_{1}+b_{1} T+c_{1} \operatorname{TIn} T
$$

where

$$
\begin{aligned}
& a_{1}=V_{G O} \\
& b_{1}=\frac{k}{q}\left(\frac{R_{1}}{R_{2}}\left(1+\frac{R_{3} a_{1}}{R_{4} \alpha_{2}}\right) \ln \left(\frac{R_{3}}{R_{4}} \frac{A_{E 1}}{A_{E 2}}\right)+\ln \left(\frac{k}{q} \frac{R_{3}}{R_{4}} \alpha_{1} \frac{\ln \left(\frac{R_{3}}{R_{1}} \frac{A_{E 1}}{T_{\mathrm{E} 2}}\right)}{\mathrm{I}_{\mathrm{K} 2}}\right)\right) \\
& c_{1}=\frac{k}{q}(1-m)
\end{aligned}
$$

First Bandgap Reference (and still widely used!)

$$
V_{R E F}=a_{1}+b_{1} T+c_{1} \operatorname{Tln} T
$$

$$
\begin{aligned}
a_{1} & =V_{G O} \\
b_{1} & =\frac{k}{q}\binom{\left.\frac{R_{1}}{R_{2}}\left(1+\frac{R_{3} a_{1}}{R_{4} \alpha_{2}}\right) \ln \left(\frac{R_{3}}{R_{4}} \frac{A_{E 1}}{A_{E 2}}\right)+\ln \left(\frac{k}{q} \frac{R_{3}}{R_{4}} \alpha_{1} \frac{\ln \left(\frac{R_{3}}{R_{1}} \frac{A_{E 1}}{T_{E 2}}\right)}{\widetilde{T}_{\mathrm{SK}} R_{2}}\right)\right)}{c_{1}}=\frac{k}{q}(1-m)
\end{aligned}
$$

$$
\frac{d V_{\mathrm{REF}}}{\mathrm{dT}}=\mathrm{b}_{1}+\mathrm{c}_{1}(1+\ln \mathrm{T})=0
$$

$$
\mathrm{T}_{\mathrm{INF}}=\mathrm{e}^{-\left(1+\frac{b_{1}}{c_{1}}\right)}
$$

$$
\mathrm{b}_{1}=-\mathrm{c}_{1}\left(1+\ln \mathrm{T}_{\mathrm{INF}}\right)
$$

at $\mathrm{T}_{\mathrm{INF}}$

$$
V_{\text {REF }}=a_{1}-c_{1} T_{\mathrm{INF}}
$$

$$
V_{R E F}=V_{G 0}+\frac{k T_{\mathrm{INF}}}{\mathrm{q}}(\mathrm{~m}-1)
$$

$\frac{\mathrm{kT}_{\text {INF }}}{\mathrm{q}}(\mathrm{m}-1) \quad$ is small

First Bandgap Reference (and still widely used!)

$$
V_{\text {REF }}=a_{1}+b_{1} T+c_{1} T \ln T
$$

$$
V_{\text {REF }}\left(T_{\text {INF }}\right)=V_{\text {Go }}+\frac{k T_{\text {NE }}}{q}(m-1)
$$

Only 2 mV change over $200^{\circ} \mathrm{C}$ temp range !

Temperature Coefficient

$$
\mathrm{TC}=\frac{\mathrm{V}_{\mathrm{MAX}}-\mathrm{V}_{\mathrm{MIN}}}{\mathrm{~T}_{2}-\mathrm{T}_{1}}
$$

$$
\mathrm{TC}_{\mathrm{ppm}}=\frac{\mathrm{V}_{\text {MAX }}-\mathrm{V}_{\mathrm{MIN}}}{\mathrm{~V}_{\text {NOM }}\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)} 10^{6}
$$

Banba Bandgap Reference

[7] H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, A. Atsumi, and K. Sakkui, IEEE Journal of Solid-State Circuits, Vol. 34, pp. 670-674, May 1999.

Note this was introduced 25 years after the Brokaw reference

Bamba Bandgap Reference

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R} 0}=\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{0}} \\
& \mathrm{I}_{\mathrm{R} 1}=\frac{\mathrm{V}_{\mathrm{BE} 1}}{\mathrm{R}_{1}} \quad \frac{\mathrm{I}_{\mathrm{D} 2}}{\mathrm{I}_{\mathrm{D} 1}}=\mathrm{co} \\
& \mathrm{I}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 1} \\
& \mathrm{I}_{2}=\mathrm{I}_{\mathrm{R} 0}+\mathrm{I}_{\mathrm{R} 2} \\
& \mathrm{I}_{3}=\mathrm{KI}_{2} \quad \mathrm{~K} \text { is the ratio of } \mathrm{I}_{3} \text { to } \mathrm{I}_{2} \\
& \mathrm{~V}_{\mathrm{REF}}=\theta \mathrm{I}_{3} R_{4}
\end{aligned}
$$

Substituting, we obtain

$$
\mathrm{V}_{\mathrm{REF}}=\theta \mathrm{KR}_{4}\left(\frac{\mathrm{~V}_{\mathrm{BE}}}{R_{1}}+\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{0}}\right) \quad \mathrm{V}_{\mathrm{REF}}=\theta \mathrm{K} \frac{R_{4}}{R_{1}}\left(V_{\mathrm{BE}}+\frac{R_{1}}{R_{0}} \Delta \mathrm{~V}_{\mathrm{BE}}\right)
$$

With some tedious algebra, it follows that $\quad \mathrm{V}_{\mathrm{REF}}=\mathrm{a}_{11}+\mathrm{b}_{11} \mathrm{~T}+\mathrm{C}_{11} \mathrm{~T} \ln \mathrm{~T}$
Note this is of the same form as that of the Brokow reference!

Kujik Bandgap Reference

$\frac{I_{D 2}}{I_{D 1}}=$ constant

[12] K. Kuijk, "A Precision Reference Voltage Source", IEEE Journal of Solid State Circuits, Vol. 8, pp. 222-226, June 1973.

Kujik Bandgap Reference

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{R} 0}=\frac{\Delta \mathrm{V}_{\mathrm{BE}}}{\mathrm{R}_{0}} \\
& \mathrm{I}_{2}=\mathrm{I}_{\mathrm{R} 0} \\
& \mathrm{~V}_{\mathrm{REF}}=\mathrm{I}_{2} \mathrm{R}_{2}+\mathrm{V}_{\mathrm{BE} 1}
\end{aligned}
$$

solving, we obtain
$V_{R E F}=\frac{R_{2}}{R_{0}} \Delta V_{B E}+V_{B E 1}$
$\mathrm{V}_{\text {REF }}=\mathrm{a}_{22}+\mathrm{b}_{22} \mathrm{~T}+\mathrm{c}_{22} \operatorname{TInT}$

Almost all of the published bandgap references have an output of the form:

$$
V_{\text {REF }}=a+b T+c T \ln T
$$

	a	b	c
Brokow	$\mathrm{a}_{1}=\mathrm{V}_{\text {G0 }}$		$c_{1}=\frac{k}{q}(1-m)$
Banba	$a_{2}=\left[\frac{R_{4}}{R_{1}} \theta K_{3}\right] V_{\infty}$	$\mathrm{b}_{2}=\left[\frac{\mathrm{k}}{q} \theta K_{3}\right]\left(\frac{R_{4}}{R_{0} \ln }\left(\frac{A_{D 2}}{A_{D 1}}\right)+\frac{R_{4}}{R_{1}} \ln \left(\frac{k}{q} \frac{\ln \left(\frac{A_{D 2}}{A_{D 1}}\right)}{R_{0} A_{D 1} J_{\text {SX1 }}}\right)\right)$	$\mathrm{c}_{2}=\left[\frac{R_{4}}{R_{1}} \theta K_{5}\right] \frac{k}{q}(1-m)$
Mieteus	$\mathrm{a}_{3}=\mathrm{K}_{5} \mathrm{~V}_{60}$	$b_{3}=\frac{k}{q}\left(K_{3} \frac{R_{4}}{R_{0}} \ln \left(K_{1} \frac{A_{D 2}}{A_{D 1}}\right)+K_{5}\left(\ln \frac{k}{q}+\frac{\ln \left(K_{1} \frac{A_{D 2}}{A_{D 2}}\right)}{J_{5 \times} A_{D 2}}\right)\right)$	$\mathrm{c}_{3}=\frac{\mathrm{k}}{\mathrm{q}} \mathrm{K}_{5}(1-\mathrm{m})$
Kujik	$a_{4}=V_{G 0}$	$b_{4}=\frac{k}{q}\left[\frac{R_{2}}{R_{0}} \ln \left(\frac{R_{2}}{R_{1}} \frac{A_{D 2}}{A_{D 1}}\right)+\ln \left(\frac{R_{2}}{R_{1}} \frac{k}{q} \frac{\ln \left(\frac{R_{2}}{R_{1}} \frac{A_{D 2}}{A_{D 1}}\right)}{R_{0} A_{D 1} \widetilde{J}_{S X}}\right)\right]$	$c_{4}=\frac{k}{q}(1-m)$
Modified Kuijk	$a_{5}=V_{G 0}$		$c_{5}=\frac{k}{q}(1-m)$
Modified Kuijk	$a_{6}=\mathrm{K} V_{\text {G0 }}$	$b_{6}=\frac{k}{q} \mathrm{~K}\left[\frac{R_{2}}{R_{0}} \ln \left(\frac{R_{2}}{R_{1}} \frac{A_{D 2}}{A_{D 1}}\right)+\ln \left(\frac{R_{2}}{R_{1}} \frac{\ln \left(\frac{R_{2}}{R_{1}} \frac{A_{D 2}}{R_{D 1}}\right)}{R_{0} A_{D 1} \tilde{S}_{S x}}\right)\right]$	$c_{6}=\frac{k}{q} K(1-m)$
Doyle	$a_{6}=V_{G 0}$		$c_{4}-\frac{k}{q}\left(\frac{R_{2}+R_{3}}{R_{1}+R_{2}+R_{2}}-m\right)$

$$
\mathrm{V}_{\mathrm{REF}}=\mathrm{a}+\mathrm{bT}+\mathrm{c} T \ln \mathrm{~T}
$$

- Start-up Circuits Required on all Bandgap References discussed here
- Bandgap circuits widely used to build voltage references for over 4 decades
- Basic bandgap circuits still used today
- Trimming often required to set inflection point at desired temperature
- Offset voltage of Op Amp and TCR of resistors degrade performance
- Experimental performance often a factor of 2 to 10 worse than that predicted here but still quite good
- Ongoing research activities focusing on improving performance of bandgap references

Stay Safe and Stay Healthy !

End of Lecture 41

